Laplace transform differential equation mathematics electrical engineering

Solution of RL series circuit using Laplace transform (for AC power supply)

fig.1 RL series circuit(Alternating current)

Now, let’s consider an RL series circuit as shown in Figure 1, assume the AC power source is E, and think about how to find the current I that flows t seconds after turning on the switch.

Now, in the circuit of Figure 1, the following circuit equation holds true

$$RI+L\frac{dI}{dt}=E_m\sin\omega t\hspace{50pt}(1)$$

$$RI+L\frac{dI}{dt}=E_m\sin\omega t=f(t)$$

$$F(s)=\mathcal{L}f(t)$$

Laplace transform both sides of equation (1)

$$RI(s)+L\{sI(s)-I(0)\}=E_m \frac{\omega}{s^2+\omega^2}$$

If the initial value of current I(0) is 0,

$$RI(s)+LsI(s)=E_m \frac{\omega}{s^2+\omega^2}\hspace{50pt}(2)$$

Solving equation (2) for I(s), we get

$$I(s)=\frac{\omega E_m}{(R+Ls)(s^2+\omega^2)}\hspace{50pt}(3)$$

Transform the equation

$$I(s)=\frac{\frac{\omega E_m}{L}}{(s+\frac{R}{L})(s^2+\omega^2)}$$

$$$$

$$\frac{L}{\omega E_m}I(s)=\frac{1}{(s+\frac{R}{L})(s^2+\omega^2)}\hspace{50pt}$$

$$$$

$$\frac{L}{\omega E_m}I(s)=\frac{1}{(s+\frac{R}{L})(s+j\omega)(s-j\omega)}\hspace{50pt}(4)$$

Here, we create equation (5) to decompose the right-hand side of equation (4) into partial fractions.

$$\frac{1}{(s+\frac{R}{L})(s+j\omega)(s-j\omega)}=\frac{\alpha}{s+\frac{R}{L}}+\frac{\beta}{s+j\omega}+\frac{\gamma}{s-j\omega}\hspace{50pt}(5)$$

$$$$

$$=\frac{\alpha(s+j\omega)(s-j\omega)+\beta(s+\frac{R}{L})(s-j\omega)+\gamma(s+\frac{R}{L})(s+j\omega)}{(s+\frac{R}{L})(s+j\omega)(s-j\omega)}\hspace{30pt}(6)$$

$$$$

Now that the denominators are aligned, the numerator values ​​only need to match, so the condition to find from equations (5) and (6) is equation (7).

$$1=\alpha(s+j\omega)(s-j\omega)+\beta(s+\frac{R}{L})(s-j\omega)+\gamma(s+\frac{R}{L})(s+j\omega)\hspace{50pt}(7)$$

$$$$

To find α, β, and γ, substitute appropriate values ​​for s in equation (7). For simplicity, let R/L=X.

①Substituting s=-jω

$$1=-2j\omega \beta(X-j\omega)\hspace{50pt}$$

$$\beta=-\frac{1}{2j\omega(X-j\omega)}\hspace{50pt}$$

Now

$$Z=X-j\omega \hspace{50pt}$$

$$Z=|Z|e^{j\varphi}\hspace{50pt}$$

Then(see figure 2)

$$\beta=-\frac{1}{2j\omega \sqrt{X^2+\omega^2}e^{-j\varphi}}\hspace{50pt}$$

$$=-\frac{e^{j\varphi}}{2j\omega \sqrt{X^2+\omega^2}}\hspace{50pt}(8)$$

fig.2 complex conjugate

②Substituting s=jω

$$1=2j\omega \gamma(X+j\omega)\hspace{50pt}$$

$$\gamma=\frac{1}{2j\omega(X+j\omega)}\hspace{50pt}$$

$$=\frac{1}{2j\omega \sqrt{X^2+\omega^2}e^{j\varphi}}\hspace{50pt}$$

$$=\frac{e^{-j\varphi}}{2j\omega \sqrt{X^2+\omega^2}}\hspace{50pt}(9)$$

③Substituting s=-R/L

$$1=\alpha(-X+j\omega)(-X-j\omega)\hspace{50pt}$$

$$\alpha=\frac{1}{(X-j\omega)(X+j\omega)}\hspace{50pt}$$

$$=\frac{1}{X^2+\omega^2}\hspace{50pt}(10)$$

Substituting the obtained α, β, and γ into equation (5), we get

$$\frac{L}{\omega E_m}I(s)=\frac{1}{(X^2+\omega^2)(s+X)}-\frac{e^{j\varphi}}{2j\omega \sqrt{X^2+\omega^2}(s+j\omega)}+\frac{e^{-j\varphi}}{2j\omega \sqrt{X^2+\omega^2}(s-j\omega)}$$

$$$$

$$I(s)=\frac{\omega E_m}{L\sqrt{X^2+\omega^2}}\biggl\{\frac{1}{\sqrt{X^2+\omega^2}(s+X)}-\frac{e^{j\varphi}}{2j\omega(s+j\omega)}+\frac{e^{-j\varphi}}{2j\omega(s-j\omega)}\biggr\}\hspace{20pt}(11)$$

$$$$


If we inversely transform Laplace on both sides of equation (11), we get

$$\mathcal{L^{-1}}I(s)=\frac{\omega E_m}{L\sqrt{X^2+\omega^2}}\biggl\{\frac{e^{-Xt}}{\sqrt{X^2+\omega^2}}-\frac{e^{j\varphi}e^{-j\omega t}}{2j\omega}+\frac{e^{-j\varphi}e^{j\omega t}}{2j\omega}\biggr\}$$

$$$$

$$=\frac{\omega E_m}{L\sqrt{X^2+\omega^2}}\biggl\{\frac{e^{-Xt}}{\sqrt{X^2+\omega^2}}+\frac{e^{j(\omega t-\varphi)}-e^{-j(\omega t-\varphi)}}{2j\omega}\biggr\}\hspace{30pt}(12)$$

$$$$

From Euler’s formula

$$e^{j(\omega t-\varphi)}=\cos(\omega t-\varphi)+j\sin(\omega t-\varphi)\hspace{30pt}(13)$$

$$e^{-j(\omega t-\varphi)}=\cos(\omega t-\varphi)-j\sin(\omega t-\varphi)\hspace{30pt}(14)$$

$$※\cos(-\theta)=\cos\theta,\hspace{10pt}\sin(-\theta)=-\sin\theta$$


Calculating (13)+(14)

$$e^{j(\omega t-\varphi)}+e^{-j(\omega t-\varphi)}=2\cos(\omega t-\varphi)$$

$$\cos(\omega t-\varphi)=\frac{e^{j(\omega t-\varphi)}+e^{-j(\omega t-\varphi)}}{2}\hspace{50pt}(15)$$


Calculating (13)-(14)

$$e^{j(\omega t-\varphi)}-e^{-j(\omega t-\varphi)}=2j\sin(\omega t-\varphi)$$

$$\sin(\omega t-\varphi)=\frac{e^{j(\omega t-\varphi)}-e^{-j(\omega t-\varphi)}}{2j}\hspace{50pt}(16)$$

From equation (16), equation (12) becomes

$$I(t)=\frac{\omega E_m}{L\sqrt{X^2+\omega^2}}\biggl\{\frac{e^{-Xt}}{\sqrt{X^2+\omega^2}}+\frac{\sin(\omega t-\varphi)}{\omega}\biggr\}\hspace{30pt}(17)$$

$$$$

$$=\frac{\omega E_m}{L\sqrt{\frac{R^2}{L^2}+\omega^2}}\biggl\{\frac{e^{-\frac{R}{L}t}}{\sqrt{\frac{R^2}{L^2}+\omega^2}}+\frac{\sin(\omega t-\varphi)}{\omega}\biggr\}\hspace{30pt}(18)$$

$$$$

$$=\frac{E_m}{\sqrt{R^2+\omega^2L^2}}\biggl\{\frac{\omega L}{\sqrt{R^2+\omega^2L^2}}e^{-\frac{R}{L}t}+\sin(\omega t-\varphi)\biggr\}$$

$$$$

$$=\frac{E_m}{\sqrt{R^2+\omega^2L^2}}\biggl\{\sin(\omega t-\varphi)+e^{-\frac{R}{L}t}\sin\varphi\biggr\}\hspace{30pt}(19)$$


The first term in equation (19) is the current value that flows in a steady state, and the second term with an exponential function is the transient current value that flows at the moment the switch is turned on. Become.

Leave a Reply

Your email address will not be published. Required fields are marked *